Measurement Lesson 2

\gtrless
Learning Goal 6: I can explain the importance of significant figures in a measurement and identify the number of significant figures in a measurement value.

8
Learning Goal 7: I can round calculated values to the correct number of significant figures.

O
Learning Goal 8L: I can measure to the correct number of significant figures.

Ning Ask your teacher for the handout that accompanies this lesson. You will also need a copy of a paper titled "Task Card $\mathcal{A} n s w e r$ Sheet".

Part 1: Counting Significant Fígures

Look at the handout titled "Significant figures".
This handout shows six groups of measurements. For each group, the number of significant figures is indicated.

Analyze the data on the handout to determine when zero and nonzero digits are counted as significant figures.
? When are nonzero digits counted as significant figures?
\square
? When are zero digits counted as significant figures? (Hint! There are two answers to this question.)
? When are zero digits NOT counted as significant figures? (Hint! There are two answers to this question.)

Nyly \mathcal{A} Ask your teacher for an envelope containing a "Significant Fígure puzzfe".

The puzzle has twelve square cards with numbers written on the sides of the squares.
my Assemble the cards in a 3×4 grid so that the numbers that are touching one another have the same number of significant figures.

Part 2: Rounding \mathcal{N} umbers

Compare the two groups of numbers below.

Both groups show numbers that have been rounded to a certain number of significant figures.

> Group 1
> Rounding to the right of the decimal point:
> Round to 4 sig fig: $4.67391 \longrightarrow 4.674$
> Round to 3 sig fig: $4.67391 \longrightarrow 4.67$
> Round to 2 sig fig: $4.67391 \longrightarrow 4.7$

Group 2

Rounding to the left of the decimal point:
Remove decimal and Change unneeded \#'s to right of decimal
 digits to 0's

Round to 4 sig fig: $56486.54 \rightarrow 56486 \rightarrow 56490$
Round to 3 sig fig: $56486.54 \rightarrow 56486 \rightarrow 56500$
Round to 2 sig fig: $56486.54 \rightarrow 58486 \rightarrow 56000$
? Describe how to round a number when the number of significant figures needed ends to the right of the decimal point.
? Describe how to round a number when the number of significant figures needed ends to the left of the decimal point.

Get out the "Measurement - Set 2 Task Card Answer Sheet".

These task cards show different numbers next to different colors. Each person in a group should round numbers next to a different color.

Record your answers on the "Set Task Card Answer Sheet"

Part 3: Calculations

Compare the following rules for rounding the answers to calculations.

The answers to calculations involving measurements must be rounded so that they reflect the smallest degree of precision used in the measurement.

Rule 1 Multiplication and Division Round answer to the smallest number of significant figures used in the calculation. Ex. $4.32 \times 7.301=31.54032$ 3sf Lowest \# of sig. fig. used Round answer to : 31.5 3sf *sf = significant figures

? What is the main rounding difference between the two rules?
msk your teacher for a set of "Measurement - Set 3 Task Cards" and get out the "Task Card Answer Sheet".
? Answer the questions on the task cards. Use the rules from about to round each answer to the correct number of digits.

Task Card Answer Sheet Measurement Set 2 Task Cards

Color

1	2	3	4
5	6	7	8
9	10	11	12

Measurement Set 3 Task Cards
Color

1	2	3	4
5	6	7	8

Significant Figures
 Study Sheet

Identifying Significant Figures

Rounding

To the right of the decimal
Round to 3 sig figs: 67.3735

$67.3=67.4$

To the left of the decimal
Round to 2 sig figs: 83452

Change to scientific notation.

Round up if necessary.
Not necessary

Calculations

Rule 1

Multiplication and Division
Round answer to the smallest number of significant figures used in the calculation.

Ex. $4.32 \times 7.301=31.54032$

Rule 2

Addition and Subtraction
Round answer to the smallest
number of decimal places used in the calculation.

Ex. $3 . \underline{678}+2 . \underline{12}=5 . \underline{789}$

Lowest \# of dec. places. used
Round answer to: $5 . \underline{79}$ 2dp
*dp = decimal places

Sígnificant fígures

1 Significant Figure

4

400
4.
0.004
4×10^{3}

3 Significant Figures
453
45300
4.53
0.00453
4.53×10^{3} 403

5 Significant Figures

$$
\begin{gathered}
45372 \\
4537200 \\
4.5372 \\
0.0045372 \\
4.5372 \times 10^{3} \\
40002
\end{gathered}
$$

2 Significant Figures 45 450
4.5
0.0045
4.5×10^{3}

4 Significant Figures
4537
453700
4.537
0.004537
4.537×10^{3} 4007

6 Significant Figures
453726
45372600
4.53726
0.00453726
4.53726×10^{3} 400006

Sígnificant fígures in Calculatíons - Answers

By the end of this lesson, I will be able to:

\checkmark Identify the number of significant figures in a measurement.
\checkmark Explain the difference between rounding to the right of a decimal and rounding to the left of a decimal.
\checkmark Contrast how to round the answer to a multiplication or division calculation with how to round the answer to an addition or subtraction calculation.
\checkmark Perform simple calculations and round the answers to the correct number of digits.

My Ask your teacher for the handout that accompanies this lesson. You will also need a copy of a paper titled "Task Card Answer Sheet".

Part 1: Counting Significant Fígures

Look at the handout titled "Significant figures".

This handout shows five groups of measurements. For each group, the number of significant figures is indicated.

* Analyze the data on the handout to determine when zero and nonzero digits are counted as significant figures.
? When are nonzero digits counted as significant figures?
Nonzero digits are always counted as significant figures.
? When are zero digits counted as significant figures? (Hint! There are two answers to this question.)

> Zero digits are counted as significant figures when they are in between other digits AND when they are trailing zeroes in a decimal.
? When are zero digits NOT counted as significant figures? (Hint! There are two answers to this question.)

Zero digits are note counted as significant figures when they are leading zeroes AND when they are trailing zeroes in a nondecimal.

N3 Ask your teacher for an envelope containing a "Significant fígure

 Puzzle" and get out the "Task Card Answer Sheet".The puzzle has twelve square cards with numbers written on the sides of the squares.

Ny Assemble the cards in a 3×4 grid so that the numbers that are touching one another have the same number of significant figures.

? Record your card arrangement on the "Task Card Answer Sheet" by copying the cards onto the grid. Be sure to also record the color of the cards.

Part 2: Rounding \mathcal{N} umbers

Compare the two groups of numbers below.

Both groups show numbers that have been rounded to a certain number of significant figures.

> Group 1
> Rounding to the right of the decimal point:
> Round to 4 sig fig: $4.67391 \longrightarrow 4.674$
> Round to 3 sig fig: $4.67391 \longrightarrow 4.67$
> Round to 2 sig fig: $4.67391 \longrightarrow 4.7$

Group 2

Rounding to the left of the decimal point:
Change to scientific notation!
\downarrow
Round to 4 sig fig: $56486.54 \longrightarrow 5.648654 \times 10^{4} \longrightarrow 5.649 \times 10^{4}$
Round to 3 sig fig: $56486.54 \longrightarrow 5.648654 \times 10^{4} \longrightarrow 5.65 \times 10^{4}$
Round to 2 sig fig: $56486.54 \longrightarrow 5.648654 \times 10^{4} \longrightarrow 5.6 \times 10^{4}$
? Describe how to round a number when the number of significant figures needed ends to the right of the decimal point.

Remove digits from the right of the number. Round the last digit up if the last digit removed is greater than or equal to five.
? Describe how to round a number when the number of significant figures needed ends to the left of the decimal point.

Change the number to scientific notation. Remove digits from the right of the number. Round the last digit up if the last digit removed is greater than or equal to five.

Return to your "Task Card Answer Sheet".

Your teacher has hidden Rounding Task Cards around the room. Each task card has six colors next to six questions. Each question asks you to round a number to a certain number of significant figures.
$\sqrt{2} y$ Find each task card and answer the question next the color that was on your "Significant Figure Puzzle" in Part 1.
? Record your answers on your "Task Card Answer Sheet".

Part 3: Calculations

Compare the following rules for rounding the answers to calculations.

The answers to calculations involving measurements must be rounded so that they reflect the smallest degree of precision used in the measurement.

Rule 1 Multiplication and Divisi
Round answer to the smallest number of significant figures used in the calculation.
Ex. $4.32 \times 7.301=31.54032$
Lowest \# of sig. fig. used
Round answer to : 31.5
3sf
sf = significant figures

Rule 2 Addition and Subtraction	
Round answer to the smallest number of decimal places used in the calculation.	
Ex. $3 . \underline{678}+2.12=5.789$	
$\begin{gathered} \text { 3dp } \xlongequal{2} \mathrm{dp} \quad 3 \mathrm{dp} \\ \text { Lowest \# of dec. places. used } \end{gathered}$	
Round answer to : $5 . \underline{79}$	
*dp = decimal places	

? What is the main rounding difference between the two rules?
In multiplication and division, the answer should be rounded to the lowest number of significant figures used. In addition and subtraction, the answer should be rounded to the lowest number of decimal places used.

Nm Ask your teacher for a set of "Calculation Task Cards" and get out the "Task Card Answer Sheet".
? Perform the calculations on the Calculation Task Cards. Use the rules from above to round each answer to the correct number of digits. Record your answers on your "Task Card Answer Sheet".

Task Card Answers

Puzzle Answers

See the arrangement of the cards before cutting.

Rounding Answers

Card	Red	Orange	Yellow	Green	Blue	Violet
$\mathbf{1}$	3.460	9.071	23.61	496.4	92.74	561.9
$\mathbf{2}$	4.3×10^{4}	8.9×10^{2}	7.2×10^{3}	9.7×10^{5}	6.9×10^{4}	1.5×10^{4}
$\mathbf{3}$	6.9×10^{3}	3.2×10^{4}	6.9×10^{7}	2.7×10^{2}	9.3×10^{8}	4.2×10^{5}
$\mathbf{4}$	2.85	9.12	1.38	8.57	4.08	5.23
$\mathbf{5}$	8×10^{3} (8000)	10×10^{4} $\left(1.0 \times 10^{5}\right)$ (100000)	2×10^{5} (200000)	9×10^{4} (90000)	6×10^{3} (6000)	4×10^{4} (40000)
$\mathbf{6}$	7.92×10^{5}	4.79×10^{3}	2.46×10^{4}	8.77×10^{2}	6.53×10^{7}	3.92×10^{8}
$\mathbf{7}$	4.3197×10^{7}	7.0347×10^{6}	5.3279×10^{5}	2.8535×10^{6}	3.7655×10^{5}	6.8457×10^{7}
$\mathbf{8}$	5.8	4.5	9.4	3.6	2.8	1.4
$\mathbf{9}$	6.72×10^{5}	4.33×10^{4}	2.13×10^{4}	8.30×10^{4}	3.97×10^{5}	5.83×10^{4}
$\mathbf{1 0}$	6.128×10^{5}	8.330×10^{2}	3.426×10^{7}	2.483×10^{3}	4.284×10^{9}	5.846×10^{6}
$\mathbf{1 1}$	8.9×10^{2}	5.1×10^{3}	24	67	7.8×10^{2}	4.5×10^{3}
$\mathbf{1 2}$	1.644×10^{5}	9.309×10^{6}	$\left.5.4 \times 10^{1}\right)$	$\left(6.7 \times 10^{1}\right)$		

Calculation $\mathcal{A} n s w e r s$

Card	Red	Orange	Yellow	Green	Blue	Violet
$\mathbf{1}$	6.1×10^{1} (61)	4.7×10^{1} (47)	5.4×10^{1} (54)	4.1×10^{1} (41)	2.6×10^{1} (26)	7.1×10^{1} (71)
$\mathbf{2}$	14.2	16.2	18.2	13.1	13.2	17.2
$\mathbf{3}$	14.5	19.9	8.01	11.7	18.2	13.9
$\mathbf{4}$	32	25	32	27	54	18
$\mathbf{5}$	4.1×10^{3}	3.4×10^{4}	4.4×10^{5}	1.8×10^{4}	2.1×10^{3}	2.2×10^{4}
$\mathbf{6}$	3.91	3.88	1.37	1.92	3.01	3.23
$\mathbf{7}$	1.64	2.19	2.73	3.50	1.63	1.32
$\mathbf{8}$	5.813	8.629	11.809	14.704	10.840	12.606

Terms of Use

Thank you for your purchase! By purchasing this resource, you are agreeing that the contents are the property of Shari Kendrick and licensed to you only for classroom/personal use as a single user. I retain the copyright, and reserve all rights to this product.

you MAy:

* Use items (free and purchased) for your own classroom students, or your own personal use.
\star Reference this product in blog posts, at seminars, professional development workshops, or other such venues PROVIDED there is both credit given to myself as the author and a link back to my TPT store is included in your post/presentation.
\star Distribute and make copies of free items only to other teachers PROVIDED there is credit given to Shari Kendrick and a link back to my TPT store.

you MAy $\mathfrak{N O T}$:

\star Claim this work as your own, alter the files in any way, or remove/attempt to remove the copyright/watermarks.
\star Sell the files or combine them into another unit for sale/free.
\star Post this document for sale/free elsewhere on the internet. This includes Google Doc links on blogs and public classroom websites.
\star Make copies of purchased items to share with others is strictly forbidden and is a violation of the Terms of Use, along with copyright law.
\star Obtain this product through any of the channels listed above.
Thank you for abiding by universally accepted codes of professional ethics while using this product.

If you encounter an issue with your file, notice an error, or are in any way experiencing a problem, please contact me and I will be more than happy to help sort it out!

Credits

Thank you to all of the amazing artists who created the beautiful design elements in my cover page, previews, and task cards.

Cover Outside Border Graphic
Julie Faulkner www.teacherspayteachers.com/Store/Julie-Faulkner

Preview Border Graphic
Lisa Tarman
www.teacherspayteachers.com/Store/Lisa-Tarman

Task Card Templates
Task card templates by Rebecca Bishop, Delightful Daily Deals TPT Store © www.teacherspayteachers.com/Store/Delightful-Daily-Deals

Click here to learn how to earn credit toward your next TPT purchase.

Be the first to know about new products, freebies, and updates:

Follow my TPT Store

Follow my Pinterest Chemistry Site

